High-fidelity Multipoint Aerostructural Optimization of a High Aspect Ratio Tow-steered Composite Wing

نویسندگان

  • Timothy R. Brooks
  • Joaquim R. R. A. Martins
  • Graeme J. Kennedy
چکیده

Composite materials have been playing a major role in modern aircraft design due to their high stiffness and strength to weight ratio. While the advantages of composite structures over their metallic counterparts is significant, it is possible to improve even further on the benefits offered by traditional composites through the use of novel composite manufacturing methods. One such method is automated fiber placement, whereby each layer of the laminate is laid up with spatially steered fiber orientations, as opposed to the traditional method, where the fiber direction is fixed for each layer. While these new “tow-steered” composites can potentially provide additional aeroelastic tailoring when applied aircraft wing design, it is not clear how to fully take advantage of this new design freedom. To address this, we use high-fidelity gradient-based aerostructural optimization to assess the relative performance of tow-steered composites compared to conventional composites, as well as aluminum. The aircraft configuration used in this work is a high aspect ratio variant of the Common Research Model (CRM). When comparing the optimal conventional composite and optimal aluminum designs we find an improvement of roughly 8.7% in fuel burn and a 39% reduction in structural weight. The tow-steered designs yield improvements of 0.4% in fuel burn and 10% in structural weight when compared to conventional composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-fidelity Aerostructural Optimization of a High Aspect Ratio Tow-steered Composite Wing

In the last 30 years since their introduction into aerospace applications, composites have become increasingly used, making up as much as 50% of modern aircraft by weight. Considering this fact, it is surprising that most aircraft today are only scratching the surface of the true potential of composite technology with traditional uniaxial fibers. With the introduction of Automated Fiber Placeme...

متن کامل

High-fidelity Structural Optimization of a Tow-Steered Composite Wing

1. Abstract Composite materials are now making their way into the primary structures of large transport aircraft and have contributed to more efficient airframes. However, the composites used so far consist in conventional plies with fixed angles. The introduction of the capability to manufacture tow-steered composites opens the door to more efficient airframes by enabling more tailored structu...

متن کامل

A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization

In this paper we examine the design of metallic and composite aircraft wings in order to assess how the use of composites modifies the trade-off between structural weight and drag. In order to perform this assessment, we use a gradient-based aerostructural design optimization framework that combines a high-fidelity finite-element structural model that includes panel-level design variables with ...

متن کامل

Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flu...

متن کامل

High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet

This paper focuses on the demonstration of an integrated aerostructural method for the design of aerospace vehicles. Both aerodynamics and structures are represented using high-fidelity models such as the Euler equations for the aerodynamics and a detailed finite element model for the primary structure. The aerodynamic outer-mold line and a structure of fixed topology are parameterized using a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017